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1 Introduction

Visual specification formalisms should rely on the existence of suitable languages
for expressing properties, as well as on the availability of tools for their verification.
As far as graph transformation systems are concerned, after the pioneering work
of Courcelle [3], various variants of graph logics have been proposed. In particular,
the need to reason about the possible the evolution of the topology of a graph
lead to the idea of combining temporal and graph logics. The first approaches
consisted on propositional temporal logics whose state observations were limited
to pure graph formulae. The impossibility to interleave the graphical and temporal
dimensions was thus forbidding the reasoning about the evolution of individual
components within a graph. To overcome this limitation predicate temporal
logics were proposed, where graph connectives such as quantifiers over nodes
or edges are allowed to be interleaved with temporal connectives. This requires
to consider semantical models that allow for keeping track of the identity of
components, an issue known as the trans-world indentity problem (see [7] as
well as [2] for a survey of the related philosophical issues). The most widely
adopted solution follows the so-called “Kripke semantics” approach: roughly, a
set of universal items is chosen, and its elements are used to form each state.
However, Kripke-like solutions do not fit too well with the possibility of merging
components or re-using component names, and in most cases it results in a
limited and often less intuitive logic semantics. To overcome such drawbacks we
investigate the use of “Lewis counterpart theory” for defining the semantics of
temporal graph logics. Roughly, the main idea is to exploit counterpart relations
and formulas-in-context. Counterpart relations are (partial) functions among
states, explicitly relating components of different states and thus denoting the
removal, addition, renaming and merging of components. Formulas-in-context
are formulas decorated with information regarding the variables that are being
used to keep track of the evolution of individual components. Such information
is exploited in the semantics of temporal modalities to discard irrelevant states.
As a result, the semantics of these logics become more natural and intuitive, in
particular when fixpoint operators are considered.
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Fig. 1. A counterpart model with three worlds {w0, w1, w2}

2 Counterpart Semantics for a Quantified µ-Calculus

We are developing a novel counterpart-like semantics for a quantified µ-calculus.
The main motivation arised due to the difficulties encontered in previous works [1,
5], proposing the combination of temporal logics based on modal µ-calculus with
monadic second-order logics for graphs. The starting point for our alternative
proposal was the survey on quantified modal logic proposed by Belardinelli [2],
further instantiated to graph transformations in the master’s thesis of the third
author [10] and currently being extended to deal with fix-point operators [6].

We represent systems with counterpart models roughly based on [7], where
states are algebras and the evolution relation is given by a family of partial
homomorphisms. Such models are very flexible and can be instantiated to well-
known models such as graph transition systems. Fig. 1, for instance, represents
a model with three states, each one of them being a graph (formally expressed
with an algebra) where circles, boxes, lines and arrows respectively denote nodes,
edges, edge source and edge target. Dotted lines denote the evolution of individual
components from world to world.

Our logic basically follows the (monadic) second-order µ-calculus proposed
in [1]. The main ingredients are first and second-order quantifiers, used to range
over elements of the algebra (nodes and items for the graph case); a membership
predicate used to require one element to belong to a set (which can be used
to express equality); a next-time modal operator ♦ to express the existence
of a world reachable in one step; and a fixpoint operator to express recursive
properties. In addition, we have the ordinary boolean connectives.

As an example we use some liveness properties, starting with a propositional
variant. The property expresses the fact that at some reachable state there
will be a component (edge) x pointing to itself (edge e5 ensures this in the
example of Fig. 1). Technically, the property is described with the formula
µZ.[∃x.s(x) = t(x) ∨ ♦Z] where the key point is that the fixpoint and modal
operators (ν and ♦) are combined in the well-known pattern of eventuality of an
event p: µZ.[p ∨ ♦Z]. Such event is the existence of a self-pointing component x,
expressed with the variable-closed formula ∃x.s(x) = t(x), where s and x denote
the source and target of an edge. Clearly, both the above formulas hold in all the
states of the simple example of Fig. 1 but do they hold if we consider variants
where we talk about all the components?
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The above examples do suggest that the definition of the semantics must take
into account the merging of elements as well as the removal of elements being
quantified. However, the situation is even more interesting when we consider the
semantics of open formulas. For instance, consider the subformula s(x) = t(x)∨♦Z
of the above property: once the value of x is chosen in the current state, how is
such value passed to the states denoted by the fixpoint variable Z?

We handle this situation by interpreting open formulas over sets of pairs (w, σ),
for w a state and σ an assignment over w (that is, a substitution associating
formula variables to components of the state w). The idea is to associate worlds
and sets of assignments to open formulas, instead of just worlds: it allows for a
straightforward interpretation of fix-points and for their smooth integration with
the evaluation of quantifiers, at the same time properly extending the standard
intepretation for closed formulas.

Another key point in our approach is in our interpretation of the temporal
modality, which discards those worlds that are actually reachable but are not in
counterpart relation with respect to the current context, i.e. when any quantified
element is not preserved by the partial homomorphims between worlds. This is
eased by the aforementioned notion of formulas-in-context. The rationale behind
this is to ensure that the logic is normal (i.e. it satisfies the K-scheme of modal
logics) and meaningful (see [2] for the philosophical stance supporting it).

As a consequence, our counterpart model faithfully represents the presence of
cyclic behaviours, avoiding the limitations of existing approaches, and dispensing
also from the reformulation of the transition relation. The resulting semantics
is a streamlined and intuitively appealing one, yet it is general enough to cover
most of the alternatives we are aware of.3

3 Conclusion and Future Works

We foresee a few obvious directions for further research. As a start, we would
like to investigate if the correspondence results between quantified µ-calculi
and Petri nets logics proposed in [1] could be lifted to our framework, and its
richer family of counterpart relations. We would also like to better understand
the relationship with spatial logics, along the lines of [5], possibly adopting a
family of labelled counterpart relations, and the richer modal operators ♦〈p,Y 〉,
basically stating that the transition between worlds is caused by a specific rule,
that may create a chosen set Y of new elements. Another interesting point is in
understanding the tradeoff between expressivity and complexity regarding the
choice of information being discarded in the semantics of the modal operator. We
ignore those reachable worlds that are not in counterpart relation with respect to
the current assignment, while other choices are possible like accepting the worlds,
but making assignments undefined when the assigned element is deleted [4] or
not discarding anything [1].

3 For an overview of the existing literature (such as e.g. [1, 5, 9, 11]) and comparison
with our work we refer the interested reader to [6].
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Also the development of adequate proof systems should be pursued. Indeed,
this is one the reasons for giving meaning to formulas-in-context, instead of
just to naked formulas. So, a formula has associated a set of variables, its
“context”. Intuitively, the context of a formula contains at least the free variables
of the formula, and does not contain the bounded variables of the formula.
The use of formulas-in-context guarantees the so-called K-scheme, stating that
�(ψ1 → ψ2)[Γ ;∆] implies �(ψ1) → �(ψ2)[Γ ;∆]. The use of contexts is pivotal
here, since otherwise the axiom might not always be satisfied. Instead, its validity
tells us that the resulting logic is normal, which is a property of all classical
modal logics [8], and a preliminar step in establishing any proof system.
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